Subscribe

RSS Feed (xml)

Powered By

Skin Design:
Free Blogger Skins

Powered by Blogger

search topic

Wednesday, August 6, 2008

IMP interview questions .NET Technical Questions 2008 - 6

More Framework Related Topics and Important asked questions in placement papers and technical / programming interviews

1.What is Code Access Security (CAS)?
CAS is the part of the .NET security model that determines whether or not a piece of code is allowed to run, and what resources it can use when it is running. For example, it is CAS that will prevent a .NET web applet from formatting your hard disk.

2.How does CAS work?
The CAS security policy revolves around two key concepts - code groups and permissions. Each .NET assembly is a member of a particular code group, and each code group is granted the permissions specified in a named permission set.
For example, using the default security policy, a control downloaded from a web site belongs to the 'Zone - Internet' code group, which adheres to the permissions defined by the 'Internet' named permission set. (Naturally the 'Internet' named permission set represents a very restrictive range of permissions.)

3.Who defines the CAS code groups?
Microsoft defines some default ones, but you can modify these and even create your own. To see the code groups defined on your system, run 'caspol -lg' from the command-line. On my syystem it looks like this:

Level = Machine
Code Groups:
1. All code: Nothing
1.1. Zone - MyComputer: FullTrust
1.1.1. Honor SkipVerification requests: SkipVerification
1.2. Zone - Intranet: LocalIntranet
1.3. Zone - Internet: Internet
1.4. Zone - Untrusted: Nothing
1.5. Zone - Trusted: Internet
1.6. StrongName - 0024000004800000940000000602000000240000525341310004000003
000000CFCB3291AA715FE99D40D49040336F9056D7886FED46775BC7BB5430BA4444FEF8348EBD06
F962F39776AE4DC3B7B04A7FE6F49F25F740423EBF2C0B89698D8D08AC48D69CED0FC8F83B465E08
07AC11EC1DCC7D054E807A43336DDE408A5393A48556123272CEEEE72F1660B71927D38561AABF5C
AC1DF1734633C602F8F2D5: Everything
Note the hierarchy of code groups - the top of the hierarchy is the most general ('All code'), which is then sub-divided into several groups, each of which in turn can be sub-divided. Also note that (somewhat counter-intuitively) a sub-group can be associated with a more permissive permission set than its parent.
How do I define my own code group?
Use caspol. For example, suppose you trust code from www.mydomain.com and you want it have full access to your system, but you want to keep the default restrictions for all other internet sites. To achieve this, you would add a new code group as a sub-group of the 'Zone - Internet' group, like this:
caspol -ag 1.3 -site www.mydomain.com FullTrust
Now if you run caspol -lg you will see that the new group has been added as group 1.3.1:
...
1.3. Zone - Internet: Internet
1.3.1. Site - www.mydomain.com: FullTrust
...
Note that the numeric label (1.3.1) is just a caspol invention to make the code groups easy to manipulate from the command-line. The underlying runtime never sees it.

4.How do I change the permission set for a code group?
Use caspol. If you are the machine administrator, you can operate at the 'machine' level - which means not only that the changes you make become the default for the machine, but also that users cannot change the permissions to be more permissive. If you are a normal (non-admin) user you can still modify the permissions, but only to make them more restrictive. For example, to allow intranet code to do what it likes you might do this:
caspol -cg 1.2 FullTrust
Note that because this is more permissive than the default policy (on a standard system), you should only do this at the machine level - doing it at the user level will have no effect.

5.Can I create my own permission set?
Yes. Use caspol -ap, specifying an XML file containing the permissions in the permission set. To save you some time, here is a sample file corresponding to the 'Everything' permission set - just edit to suit your needs. When you have edited the sample, add it to the range of available permission sets like this:
caspol -ap samplepermset.xml
Then, to apply the permission set to a code group, do something like this:
caspol -cg 1.3 SamplePermSet (By default, 1.3 is the 'Internet' code group)

6.I'm having some trouble with CAS. How can I diagnose my problem?
Caspol has a couple of options that might help. First, you can ask caspol to tell you what code group an assembly belongs to, using caspol -rsg. Similarly, you can ask what permissions are being applied to a particular assembly using caspol -rsp. I can't be bothered with all this CAS stuff. Can I turn it off?
Yes, as long as you are an administrator. Just run:
caspol -s off
http://www.codeproject.com/dotnet/UB_CAS_NET.asp

7.Which namespace is the base class for .net Class library?
Ans: system.object

8.What are object pooling and connection pooling and difference? Where do we set the Min and Max Pool size for connection pooling?
Object pooling is a COM+ service that enables you to reduce the overhead of creating each object from scratch. When an object is activated, it is pulled from the pool. When the object is deactivated, it is placed back into the pool to await the next request. You can configure object pooling by applying the ObjectPoolingAttribute attribute to a class that derives from the System.EnterpriseServices.ServicedComponent class.
Object pooling lets you control the number of connections you use, as opposed to connection pooling, where you control the maximum number reached.
Following are important differences between object pooling and connection pooling:
Creation. When using connection pooling, creation is on the same thread, so if there is nothing in the pool, a connection is created on your behalf. With object pooling, the pool might decide to create a new object. However, if you have already reached your maximum, it instead gives you the next available object. This is crucial behavior when it takes a long time to create an object, but you do not use it for very long.
Enforcement of minimums and maximums. This is not done in connection pooling. The maximum value in object pooling is very important when trying to scale your application. You might need to multiplex thousands of requests to just a few objects. (TPC/C benchmarks rely on this.)
COM+ object pooling is identical to what is used in .NET Framework managed SQL Client connection pooling. For example, creation is on a different thread and minimums and maximums are enforced.

9.What is Application Domain?
The primary purpose of the AppDomain is to isolate an application from other applications. Win32 processes provide isolation by having distinct memory address spaces. This is effective, but it is expensive and doesn't scale well. The .NET runtime enforces AppDomain isolation by keeping control over the use of memory - all memory in the AppDomain is managed by the .NET runtime, so the runtime can ensure that AppDomains do not access each other's memory.
Objects in different application domains communicate either by transporting copies of objects across application domain boundaries, or by using a proxy to exchange messages.
MarshalByRefObject is the base class for objects that communicate across application domain boundaries by exchanging messages using a proxy. Objects that do not inherit from MarshalByRefObject are implicitly marshal by value. When a remote application references a marshal by value object, a copy of the object is passed across application domain boundaries.

10.How does an AppDomain get created?
AppDomains are usually created by hosts. Examples of hosts are the Windows Shell, ASP.NET and IE. When you run a .NET application from the command-line, the host is the Shell. The Shell creates a new AppDomain for every application.
AppDomains can also be explicitly created by .NET applications. Here is a C# sample which creates an AppDomain, creates an instance of an object inside it, and then executes one of the object's methods. Note that you must name the executable 'appdomaintest.exe' for this code to work as-is.

using System;
using System.Runtime.Remoting;
public class CAppDomainInfo : MarshalByRefObject
{
public string GetAppDomainInfo()
{
return "AppDomain = " + AppDomain.CurrentDomain.FriendlyName;
}
}
public class App
{
public static int Main()
{
AppDomain ad = AppDomain.CreateDomain( "Andy's new domain", null, null );
ObjectHandle oh = ad.CreateInstance( "appdomaintest", "CAppDomainInfo" );
CAppDomainInfo adInfo = (CAppDomainInfo)(oh.Unwrap());
string info = adInfo.GetAppDomainInfo();
Console.WriteLine( "AppDomain info: " + info );
return 0;
}
}

11.What is serialization in .NET? What are the ways to control serialization?
Serialization is the process of converting an object into a stream of bytes. Deserialization is the opposite process of creating an object from a stream of bytes. Serialization/Deserialization is mostly used to transport objects (e.g. during remoting), or to persist objects (e.g. to a file or database).Serialization can be defined as the process of storing the state of an object to a storage medium. During this process, the public and private fields of the object and the name of the class, including the assembly containing the class, are converted to a stream of bytes, which is then written to a data stream. When the object is subsequently deserialized, an exact clone of the original object is created.
Binary serialization preserves type fidelity, which is useful for preserving the state of an object between different invocations of an application. For example, you can share an object between different applications by serializing it to the clipboard. You can serialize an object to a stream, disk, memory, over the network, and so forth. Remoting uses serialization to pass objects "by value" from one computer or application domain to another.
XML serialization serializes only public properties and fields and does not preserve type fidelity. This is useful when you want to provide or consume data without restricting the application that uses the data. Because XML is an open standard, it is an attractive choice for sharing data across the Web. SOAP is an open standard, which makes it an attractive choice.
There are two separate mechanisms provided by the .NET class library - XmlSerializer and SoapFormatter/BinaryFormatter. Microsoft uses XmlSerializer for Web Services, and uses SoapFormatter/BinaryFormatter for remoting. Both are available for use in your own code.

12.Why do I get errors when I try to serialize a Hashtable?
XmlSerializer will refuse to serialize instances of any class that implements IDictionary, e.g. Hashtable. SoapFormatter and BinaryFormatter do not have this restriction.

13.What is exception handling?
When an exception occurs, the system searches for the nearest catch clause that can handle the exception, as determined by the run-time type of the exception. First, the current method is searched for a lexically enclosing try statement, and the associated catch clauses of the try statement are considered in order. If that fails, the method that called the current method is searched for a lexically enclosing try statement that encloses the point of the call to the current method. This search continues until a catch clause is found that can handle the current exception, by naming an exception class that is of the same class, or a base class, of the run-time type of the exception being thrown. A catch clause that doesn't name an exception class can handle any exception.
Once a matching catch clause is found, the system prepares to transfer control to the first statement of the catch clause. Before execution of the catch clause begins, the system first executes, in order, any finally clauses that were associated with try statements more nested that than the one that caught the exception.
Exceptions that occur during destructor execution are worth special mention. If an exception occurs during destructor execution, and that exception is not caught, then the execution of that destructor is terminated and the destructor of the base class (if any) is called. If there is no base class (as in the case of the object type) or if there is no base class destructor, then the exception is discarded.

No comments: